If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+4y-3=0
a = 5; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·5·(-3)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{19}}{2*5}=\frac{-4-2\sqrt{19}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{19}}{2*5}=\frac{-4+2\sqrt{19}}{10} $
| 2(x-2)–3(x-3)=5(x-5) | | 3(x–2)=2x+1 | | 3x–2=10–x | | 2+5=x-x | | 100-r=82 | | -1,2x=-24 | | 15+3x=305 | | 4e+25=45 | | 15+2x=305 | | 2x+6x=2x+6x | | 5e+12=62 | | 4.34=(0.55+2x)^2/(0.14-x) | | 160-3n-n=180 | | 3.2+4.2y-1.4+3.5=5.4+2.1 | | 3.2+4.2y-1.4+3.5=5.4+3.1 | | -3.2y+6.7=3.2+4.2y-1.4+3.5 | | 4a+36=108 | | s-66=11 | | 27+2x=301 | | x-0.7x=7 | | 3x-6=x+ | | 7{(-20-5y)/2}-5y=45 | | 80+2x=520 | | 2x-11=x4=x+4 | | 36.3÷y=12 | | 36.6/y=12 | | (2D3−5D2+D+3)y=0. | | 5.4-9.2=2(x-9)+2 | | 2=5h4 | | 80+1x=520 | | 28+n=124 | | 4+1X+x=76 |